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Abstract

We study the relativistic version of the d-dimensional isotropic quantum harmonic os-
cillator based on the spinless Salpeter equation. This has no exact analytical solutions.
We use perturbation theory to obtain compact formulas for the first and second-order rel-
ativistic corrections; they are expressed in terms of two quantum numbers and the spatial
dimension d. The formula for the first-order correction is obtained using two different meth-
ods and we illustrate how this correction splits the original energy into a number of distinct
levels each with their own degeneracy. Previous authors obtained results in one and three
dimensions and our general formulas reduce to them when d = 1 and d = 3 respectively.
Our two-dimensional results are novel and we provide an example that illustrates why two
dimensions is of physical interest. We also obtain results for the two-dimensional case using
a completely independent method that employs ladder operators in polar coordinates. In
total, three methods are used in this work and the results all agree.
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1 Introduction

The harmonic oscillator plays a crucial role in quantum mechanics and quantum field theory.
In quantum mechanics, the quadratic potential is one of the few potentials that yields exact
analytical results. Moreover, the result is somewhat generic since any smooth potential that
possesses a minimum can be approximated as a quadratic potential in the neighborhood of its
equilibrium point. The energy of the ground state of the quantum harmonic oscillator (QHO)
is not zero, a fact which takes on great importance in quantum field theory and in cosmology.
A free quantized field like the electromagnetic field can be interpreted as an infinite collection
of QHOs [1] leading to a vacuum that possesses an infinite energy (or very large depending
on the momentum cut-off). This is at the heart of one of the most infamous problems in
theoretical physics: the cosmological constant problem [2].

Due to the importance of the QHO, many authors have studied relativistic versions. As pointed
out in [3], relativistic generalizations of the QHO are not unique. The situation is different
from the case of the Coulomb potential, which can be recovered from the tree level Feynman
diagram between two charged particles in quantum electrodynamics (see [4] for a derivation of
the Coulomb potential in quantum field theory). For the QHO, one can define a Dirac oscillator
for spin 1/2 particles and a Klein-Gordon oscillator for spinless particles both of which have
been studied by many authors [5–9]. An interesting model called finite-difference relativistic
quantum mechanics was solved in [3]. In that relativistic model, the authors were able to
obtain exact analytical results for the energies of the relativistic three dimensional isotropic
singular oscillator.

In this paper, we use a model of the relativistic QHO based on the spinless Salpeter equa-
tion [10] as it is the most straightforward relativistic generalization. The spinless Salpeter
equation can be viewed as an approximation to the Bethe-Salpeter formalism [11] within rela-
tivistic quantum field theories where the interactions are instantaneous and the spin degrees of

freedom are neglected. The non-relativistic kinetic term p2

2m is simply replaced by its relativistic

counterpart
√
m2 c4 + p2 c2 and interactions are described by a coordinate-dependent potential

V (x). This equation has previously been applied to describe bound-state constituents. For
example, for two particles of equal mass m in a bound state, the Hamiltonian H in the center-
of-momentum frame of these constituents is given by H = 2

√
p2 c2 +m2 c4 + V (x) where p is

the relative momentum and x is the relative coordinate. This Hamiltonian has been used for
the semi-relativistic description of hadrons as bound states of quarks within the framework of
potential models [12–14]. Because of the difficulty in handling the square root in the Hamilto-
nian, many authors have also studied the spinless Salpeter equation numerically [15–20].

In our work, we consider a single particle moving in an isotropic harmonic potential. The
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“Salpeter” Hamiltonian for the relativistic QHO is then given by

H =
√
m2 c4 + p2 c2 −mc2 +

1

2
mω2 r2 (1)

where p is the momentum operator, r the radius, m the mass of the particle, c the speed of
light and ω a free parameter (we subtracted out the rest mass of the particle as it is convenient
to set the kinetic term to zero when p = 0). In contrast to the non-relativistic case, there
are no known exact analytical results for the above Hamiltonian though lower and upper
energy bounds have been obtained in three dimensions [6, 7]. Authors have therefore turned
to perturbation theory to obtain relativistic corrections. Expanding the above Hamiltonian

operator in powers of p2

m2 c2
one obtains

H =
p2

2m
+

1

2
mω2 r2 − 1

8

p4

m3 c2
+

1

16

p6

m5 c4
+ ...

= H0 +H ′1 +H ′2 + ...

(2)

where

H0 =
p2

2m
+

1

2
mω2 r2 (3)

is the non-relativistic Hamiltonian and

H ′1 = − p4

8m3 c2
and H ′2 =

p6

16m5 c4
(4)

are first and second-order perturbations to the Hamiltonian H0 respectively. Using perturba-
tion theory, analytical results for the Hamiltonian (1) were previously obtained in one and three
dimensions: first-order relativistic corrections in three dimensions were obtained in [8] whereas
first and second-order relativistic corrections in one and three dimensions were obtained in [9].

In this paper we obtain explicit analytical formulas for the first and second order relativistic
corrections to the isotropic QHO governed by the Salpeter Hamiltonian (1), that are valid in
any spatial dimension d. The problem is solved in spherical coordinates and the results are
expressed in terms of the dimension d and two quantum numbers n and ` which are non-
negative integers. Our first-order correction formula reduces to that obtained in [8,9] for d = 1
and d = 3, and our second-order correction formula reduces to that obtained in [9] for d = 1
and d = 3. Our d = 2 results are novel and we also solve the two-dimensional case using a
completely independent method that makes use of ladder operators in polar coordinates. The
result obtained by substituting d = 2 into our general formulas matches those obtained using
the ladder operator technique. The two-dimensional case is of potential physical interest as we
point out that for a particular choice of magnetic field strength, a charged particle moving in
a uniform magnetic field B = B0 ẑ and a linear electric field E = −k z ẑ (where B0 and k are
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constants) can have quantized energy levels that are equivalent to those of the two-dimensional
isotropic QHO.

The general formula for the first-order correction is obtained in two different ways: one using
a d-dimensional Kramers-Pasternak type relation that we derive that relates the expectation
value of a power of r to the expectation value of other powers of r [21] (see [22, 23] for ap-
plications) and a second using a recurrence relation obeyed by the eigenfunctions when they
are multiplied by r2. The two independent methods yield the same result providing a strong
confirmation of the general formula. We determine how the first-order relativistic correction
splits the original energy into distinct levels each with their own degeneracy.

The energy of the (unperturbed) d-dimensional isotropic QHO is degenerate (except for d = 1).
Nonetheless, if one works in spherical coordinates one can use non-degenerate perturbation
theory to calculate relativistic corrections as one does in the case of the hydrogen atom [22–24].
Non-degenerate perturbation theory can be used if one can find a Hermitian operator A that has
the following two properties: a) it commutes with H0 and the perturbations H ′1 and H ′2 and b)
the degenerate states of H0 are also eigenstates of A with distinct eigenvalues [23]. Let us now
identify this Hermitian operator. Consider the three-dimensional isotropic harmonic oscillator
in spherical coordinates. The states |n`m〉 are simultaneous eigenstates of the Hamiltonian
operatorH0 and the angular momentum operators L2 and Lz with eigenvalues (2n+`+3/2) ~ω,
~2 `(`+ 1) and ~m respectively where n and ` are non-negative integers and m runs from −`
to ` inclusively in steps of unity. Consider two eigenstates |n1`1m1〉 and |n2`2m2〉. They are
degenerate if 2n1 + `1 = 2n2 + `2 with `1 6= `2 and/or m1 6= m2. If `1 6= `2, then when L2

acts separately on the two degenerate states, the eigenvalues will be distinct and if m1 6= m2,
then when Lz acts separately on the two degenerate states, the eigenvalues will be distinct.
Therefore, L2 and/or Lz will have distinct eigenvalues. Moreover, L2 and Lz both commute
with H0 and the perturbations H ′1 and H ′2. Therefore, we have identified Hermitian operators,
namely L2 or Lz, that have the two required properties; the |n`m〉 basis can therefore be
used in nondegenerate perturbation theory. It is easy to see that this result generalizes to
higher dimensions where there are more angular quantum numbers. So though obtaining
the energies and eigenfunctions for the (unperturbed) d-dimensional isotropic QHO is much
easier in Cartesian coordinates, those eigenfunctions do not form the correct basis for use in
nondegenerate perturbation theory.

Our paper is organized in the following fashion. In section 2 we discuss the non-relativistic
d-dimensional isotropic QHO in spherical coordinates. The goal here is to gather results, such
as the energy and the eigenfunctions of the unperturbed Hamiltonian H0, in d dimensions. In
section 3, we obtain, using two different methods, a general formula for the first-order relativis-
tic correction. The effect of this correction is illustrated in an energy level diagram. In section
4, we make use of ladder operators in polar coordinates to perform an independent calculation
of the first and second-order relativistic corrections in two dimensions. We also briefly discuss
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a physical system that has the same quantized energy levels as the two-dimensional isotropic
QHO. In section 5, we obtain a general formula for the second-order relativistic correction valid
in d dimensions. The conclusion summarizes our final results and discusses a physical system
whose relativistic corrections would be of interest to study in the future.

2 The d-dimensional isotropic QHO in spherical coordinates

In this section, we obtain the (unperturbed) energies and eigenfunctions in d-dimensional
spherical coordinates that are needed to calculate the first-order and second-order relativistic
corrections. The radial equation in d-dimensions (appendix A) is solved for the potential of
the isotropic harmonic oscillator. The main goal of this section is to gather results that are
needed elsewhere, leading to a self-contained presentation. The reader interested in the details
of higher-dimensional wave equations in spherical coordinates is referred to [25] and references
therein.

2.1 Energies and eigenfunctions of the d-dimensional isotropic harmonic
oscillator in spherical coordinates

The potential of the isotropic harmonic oscillator, valid in any dimension, is given by

V (r) =
1

2
mω2 r2 (5)

and substituting this into the d-dimensional radial equation (A.4) yields

u′′ =

[
−2m

~2
E +

m2ω2

~2
r2 +

(
d− 3 + l (l + d− 2)

)
r2

]
u− (d− 3)

r
u′ . (6)

To solve the above equation we first consider two limiting cases. When r → 0, (6) reduces to

− ~2

2m
u′′ − (d− 3) ~2

2mr
u′ +

[d− 3 + l(l + d− 2)] ~2

2mr2
u = 0.

This equation admits two solutions, namely α1(r) = rl+1 and α2(r) = r3−d−l. Since the
exponent of α2 is negative when l > 3− d it is not a valid solution1 as the eigenfunction would
diverge as r → 0. Thus the valid solution as r → 0 is α1(r) = rl+1. When r →∞, (6) reduces
to

− ~2

2m
u′′ − (d− 3) ~2

2mr
u′ +

mω2 r2

2
u = 0.

1In other words, α2 is not a general solution valid for all possible values of the non-negative integer l.
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This equation admits β±(r) = e±
mω
2 ~ r

2
as solutions. However, since the solution must converge

as r →∞, only β− is a valid solution. Thus the valid solution as r →∞ is β−(r) = e−
mω
2 ~ r

2
.

It is therefore convenient to express u(r) in the form

u(r) = rl+1e−
mω
2~ r

2
f(r) (7)

where f(r) is a function to be determined. Substituting the above into (6) yields the following
differential equation for f(r):

f ′′(r) +

[
2

(
l + 1

r
− mω r

~

)
+
d− 3

r

]
f ′(r) +

[
−mω (2l + d)

~
+

2mE

~2

]
f(r) = 0. (8)

Consider the power series expansion f(r) =
∑∞

i=0 ai r
i, where ai are coefficients to determine.

Substituting this into (8) yields the equation

∞∑
i=0

{
(i+ 1)(i− 1 + 2l + d) ai+1 r

i−1 +
m

~

(
−ω (2i+ 2l + d) +

2E

~

)
ai r

i

}
= 0. (9)

The coefficient for each power of r has to be zero independently. The coefficient of r−1 is
(2 l + d − 1) a1. Therefore (2 l + d − 1) a1 = 0. This implies that a1=0 or 2l + d − 1 = 0.
The latter is possible only when d = 1 (note that in one dimension l is zero). Therefore for
d 6= 1, we have a1 = 0 and for d = 1 we have a1 free (unconstrained). Equation (9) leads to
the following recurrence relation

(i+ 2)(i+ d+ 2 l) ai+2 +
m

~

(
−ω (2 i+ 2 l + d) +

2E

~

)
ai = 0, ∀ i ∈ N0 . (10)

For d 6= 1, a1 = 0, and the above yields aj = 0 for odd values of j; there is a recursion relation
only for even coefficients. For d = 1, one has a separate recursion relation for odd and even
coefficients. The power series for f(r) must be truncated or else f(r) → er

2
at infinity which

would imply that u(r) diverges towards infinity. Therefore, past a certain index n′, an′+2 = 0.
Substituting i = n′ in (10) yields m

~
(
−ω(2n′ + 2 l + d) + 2E

~
)
an′ = 0. Therefore the energy

of the d-dimensional isotropic QHO is given by

Enl = ~ω
(
n′ + l +

d

2

)
(11)

where n′ is even if d 6= 1 but can be either odd or even for d = 1. Letting n′ = 2n the final
expression for the energy is

Enl = ~ω
(

2n+ l +
d

2

)
. (12)
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For d 6= 1, n and l are any non-negative integer. For the special case of d = 1, one sets l = 0
and n = N/2 where N is any non-negative integer. So for d = 1, the energy is non-degenerate
and given by the well known result of E = (N + 1/2)~ω with N=0,1,2,...etc.

We now find the exact expression for f(r). Define a new variable, η(r) = mω
~ r2. In terms of

this new variable, equation (8) reads

ηf ′′(η) +

[(
l +

d

2
− 1

)
+ 1− η

]
f ′(η) + n f(η) = 0 (13)

where (12) was substituted for the energy and the primes denote now derivatives with respect
to η. This corresponds to Laguerre’s equation, xy′′+(α+1−x)y′+n y = 0, with α = l+ d

2 −1

and x = η = mω
~ r2. The solution is then f(η) = L

(l+ d
2
−1)

n

(
η
)
, where Lαn(x) are the generalized

Laguerre polynomials. Substituting f(η) into (7) yields:

unl(η) = Anl

(
~
mω

)( l+1
2 )

η( l+1
2 ) e−

η
2 L

(l+ d
2
−1)

n (η) . (14)

where the normalization constant is given by

Anl =
(mω

~

) l
2
+ d

4

√
2n!

Γ
(
n+ l + d

2

) . (15)

Except for d = 1, n and l above are any non-negative integers. For d = 1 one has to set l = 0,
n = N/2 where N is a non-negative integer and replace the radius r by x ∈ (−∞,∞).

3 First-order relativistic correction: general formula

We now calculate the first-order relativistic correction. We obtain a general formula valid in
d dimensions using two different methods. Method I uses a d dimensional Kramers-Pasternak
type relation that is derived in appendix B. This relation allows one to obtain the expectation
value of a given power of r in terms of the expectation value of other powers of r. Method II
uses a recurrence relation that is obeyed by the eigenfunctions. The two independent methods
yield the same general formula providing confirmation of our result.

3.1 First-order relativistic correction: method I

The first-order relativistic correction E(1) is given by the expectation value of H ′1:

E(1) = 〈H ′1 〉 = − 1

8m3 c2
〈p4 〉 = − 1

2mc2
[
E2 − 2E 〈V 〉+ 〈V 2 〉

]
(16)
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where H ′1 is given by (4) and we used the fact that p2 is Hermitian and p2 ψn = 2m (E−V )ψn.
The energy of the d-dimensional isotropic QHO (unperturbed) are given by (12)

Enl = ~ω
(

2n+ l +
d

2

)
, (17)

where n and l are quantum numbers that are non-negative integers and d is the dimension
(recall that d = 1 is an exception with l = 0 identically and n = N/2 where N is a non-
negative integer). Applying the Feynman-Hellmann theorem yields ∂Enl

∂ω = 〈 ∂H0
∂ω 〉 so that

〈 r2 〉 = ~
mω

(
2n+ l + d

2

)
. Substituting this into (16) yields

E(1) = − 〈V
2 〉

2mc2
= −mω4

8 c2
〈 r4 〉 . (18)

The quantity 〈 r4 〉 is obtained from the d-dimensional Kramers-Pasternak type relation derived
in appendix B by substituting s = 2 in (B.6):

m2ω2

~2
8 〈 r4 〉 − 2mE

~2
6 〈 r2 〉 +

[
4
(
d − 3 + l (l + d − 2)

)
+ (2 − d)(6 − d)

]
= 0 . (19)

The first-order relativistic correction is finally given by

E(1) = − ~2ω2

8mc2

[
6n2 + l2 + 6n l + 3nd+ l d+ l +

(d2 + 2 d)

4

]
. (20)

The above general formula valid in d dimensions is novel. It is always negative since the

quantity in square brackets is always positive. For d = 3 it reduces to E
(1)
d=3 = − ~2ω2

8mc2

[
6n2 +

l2 + 6n l + 9n + 4 l + 15
4

]
in agreement with previous results [8, 9]. For d = 1, recall that

l = 0 and n = N/2 with N a non-negative integer so that E
(1)
d=1 = − ~2ω2

32mc2

[
6N2 + 6N + 3

]
in

agreement with therelativistic correction to the usual (d = 1) harmonic oscillator [9, 23]. Our
result for d = 2 is novel and is given by

E
(1)
d=2 = − ~2ω2

8mc2
[
6n2 + l2 + 6n l + 6n+ 3 l + 2

]
. (21)

We also derive the first-order (and second-order) results for the particular case of d = 2 in a
completely different way using ladder operators in polar coordinates in section 4. The results
agree providing confirmation of our d = 2 result.

3.2 First-order correction: method II

We now obtain the first-order correction in a different way using a recurrence relation obeyed
by the eigenfunctions. Generalized Laguerre polynomials have some nice properties, two of
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which are [26]

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x) (22)

and
xL(α+1)

n (x) = (n+ α)L
(α)
n−1(x)− (n− x)L(α)

n (x) . (23)

Multiplying the eigenfunction given by (14) by η and using (22) and (23) with α = l + d
2 − 1

and x = η we obtain the following recurrence relation

η un,l(η) = Dn,l un+1,l(η) +
En,l
~ω

un,l(η) +Dn−1,l un−1,l(η), (24)

where

Dn,l = −

√
(n+ 1)

(
n+ l +

d

2

)
(25)

and we used the fact that Anl given by (15) is equal to
√

n
n+l+ d

2
−1An−1 l. Multiplying the

left-hand side of (24) by η and then applying the recurrence relation (24) to each function on
the right-hand side yields

η2 un,l(η) =Dn,lDn+1,l un+2,l +
Dn,l

~ω
[En,l + En+1,l] un+1,l +

[
D2
n,l +

E2
n,l

~2ω2
+D2

n−1,l

]
un,l

+
Dn−1,l
~ω

[En−1,l + En,l] un−1,l +Dn−1,lDn−2,l un−2,l.

(26)

The first-order correction, given by (18) is then given by

E(1) = − ~2ω2

8mc2

[
6n2 + l2 + 6nl + 3nd+ (1 + d)l +

d

4

(
2 + d

)]
(27)

where we used (26), (25) and (17). The above general formula agrees exactly with formula (20)
derived using method I in the previous subsection. This agreement is a strong confirmation of
our results.

3.3 Splitting of energy levels and degeneracy

The (unperturbed) energy of the d-dimensional isotropic QHO is given by E = (2n+l+d/2)~ω.
It is convenient to express this as E = (N + d/2) ~ω where N = 2n + l has integer values
N = 0, 1, 2, 3, .... Hence, N = 0 corresponds to the ground state, N = 1 to the first excited
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state, etc. The degeneracy of the energy for a given N is well known and given by the binomial
coefficient

g(N, d) =

(
N + d− 1

d− 1

)
. (28)

For example, the degeneracy is 1 for d = 1, N + 1 for d = 2 and (N + 1)(N + 2)/2 for d = 3.
The first-order relativistic correction (20) is always negative and therefore shifts the energy
downwards2. It also splits the original energy level into a number of distinct levels, each with
their own degeneracy.

We now determine the number of distinct levels for a given N and the degeneracy of each level.
We rewrite the first-order relativistic correction (20) in the form

E(1) = − ~2ω2

8mc2

[
3

2

( E
~ω

)2
− 1

2
l(l + d− 2) +

4 d− d2

8

]
. (29)

For a given original energy E (hence, a given N), the above formula yields a different value
for each different value of l. In other words, the original energy splits into distinct levels, one
for each possible value of l. So the number of distinct levels is simply the number of possible
l values for a given N . N is given by 2n + l. If N is even, l can be equal to 0, 2, 4, ..., N so
that there are N/2 + 1 possible values. If N is odd, l can be equal to 1, 3, 5, ..., N so that there
are (N + 1)/2 possible values. So the original energy level splits into [N/2 + 1] distinct levels
where [x] is the greatest integer equal to or less than x. Therefore N = {0, 1} has one level
(no splitting), N = {2, 3} splits into two levels, N = {4, 5} splits into three levels, etc. Note
that for the special case of d = 1, there is no splitting since l is always equal to zero regardless
of the value of N . The degeneracy of each distinct level is equal to the number of different
eigenfunctions of the L2 operator in d dimensions for a given l. This is given by [25]

h(l, d) =
(2 l + d− 2)(l + d− 3)!

(d− 2)! l!
. (30)

For d = 3, the above reduces to the expected expression h = 2 l + 1. An energy level diagram
(not to scale) showing the first few energy levels and their splitting is shown in figure 1. The
shift in energy is always negative (downwards) but less negative the larger the value of l. Note
that the degeneracy (28) of the original unperturbed energy level labeled by N is equal to
the sum of the degeneracy (30) over all the possible l values of the distinct levels the original
energy has split into.

2The second-order correction, which we calculate in section 5, is positive but much smaller. We do not
include it here.
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N= 4 

ℓ= 4 

ℓ= 2 

N= 3 

ℓ= 3 

ℓ= 1 

N= 0 

ℓ= 0 

N= 1 

ℓ= 1 

N= 2 

ℓ= 2 

ℓ= 0 

ℓ= 0 

N= 5 

ℓ= 5 

ℓ= 3 

ℓ= 1 

Figure 1: Energy level diagram. The unperturbed energy levels labeled by N are shifted
downwards in all cases and split into [N/2 + 1] distinct levels labeled by the value of l. The
shift is smaller (less negative) for larger l. The diagram applies to all dimensions except d = 1.
The degeneracy of each level labeled by l is h(l, d) given by (30).
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4 Two-dimensional results using ladder operators in polar co-
ordinates

One is familiar with the use of ladder operators for obtaining the energy levels of the harmonic
oscillator in one dimension. In Cartesian coordinates, it is straightforward to generalize this
procedure to higher dimensions since the d-dimensional oscillator can be thought of as a set
of d one-dimensional oscillators, each with their own ladder operators. However, as mentioned
in the introduction, if one wants to use non-degenerate perturbation theory, one must use
spherical coordinates and the ladder operator technique in d-dimensions becomes a bit more
cumbersome to use. However, in two dimensions the situation is simple enough that one can
define ladder operators in polar coordinates and use them for perturbative calculations. This
is an interesting and independent method for obtaining the first and second-order relativistic
corrections for the two-dimensional case.

In appendix C, the ladder operators suited for polar coordinates, labeled â and b̂, are defined
and used to obtain the energy and angular momentum. The eigenstates are labeled |Nm〉
where N and m are quantum numbers associated with the energy and angular momentum
respectively. In particular, in appendix C, the result from acting the ladder operators on the
eigenstates are obtained. These results are then used below to calculate the first-order and
second-order relativistic corrections.

It is well known that a charged particle moving in a uniform magnetic field has quantized
energies – called Landau levels – equivalent to those of the one-dimensional QHO. Examples of
real physical systems that exhibit quantized energies equivalent to those of the two-dimensional
isotropic QHO appear to be less known. At the end of this section, we discuss briefly such an
example.

4.1 First-order correction via ladder operators

The first-order relativistic correction is given by −1
8m3c2

〈Nm| p4 |Nm〉 where p2 = p2x + p2y. To

evaluate this we need to express p4 in terms of the â and b̂ ladder operators. From (C.1) and

(C.5) we obtain that px = i
√
~mω
2 (â†+ b̂†− â− b̂) and py = −

√
~mω
2 (â†− b̂†+ â− b̂). After some

algebra one obtains that

p2 = ~mω(â†â+ b̂†b̂− â†b̂† − âb̂+ 1) (31)

where (C.6) was used. The p4 operator has many terms and though not all are needed to
calculate the first order correction, most are required to evaluate the second order correction.
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Squaring the p2 operator and using (C.6) again yields

p4 = ~2m2 ω2
[
(â†â)2 + (b̂†b̂)2 + (â†b̂†)2 + (âb̂)2 + 2 + 4â†âb̂†b̂− 2â†ââ†b̂†

−2â†ââb̂+ 3â†â− 2b̂†b̂â†b̂† − 2b̂†b̂âb̂+ 3 b̂†b̂− 4âb̂
]
.

(32)

It is convenient to organize the above terms into a sum of five operators for later calculations,

p4 = ~2m2 ω2 (K0 +R4 + L4 +R2 + L2) (33)

where

K0 = (â†â)2 + (b̂†b̂)2 + 4 â†âb̂†b̂+ 3â†â+ 3b̂†b̂+ 2 ; R4 = (â†b̂†)2

L4 = (âb̂)2 ; R2 = −2â†ââ†b̂† − 2b̂†b̂â†b̂† ; L2 = −2â†ââb̂− 2b̂†b̂âb̂− 4âb̂ . (34)

The terms in K0 have an equal number of raising and lowering operators (including constants),
R4 has four raising operators, L4 has four lowering operators, R2 has two more raising than
lowering operators and L2 has two more lowering than raising operators. As a consequence,
when the operators act on the state |Nm〉, K0 does not change the value of the quantum
number N , R4 raises it by 4, L4 lowers it by 4, R2 raises it by 2 and L2 lowers it by 2. All five
operators leave the quantum number m unchanged.

To calculate the first-order correction, the only part of p4 in (33) that yields a non-zero value
is K0 given by (34). Using (C.13), the first order relativistic correction is then given by

E
(1)
d=2 =

−1

8m3 c2
〈Nm| p4 |Nm〉 =

−~2ω2

8mc2
〈Nm|K0 |Nm〉

=
−~2 ω2

16mc2
(3N2 + 6N −m2 + 4) . (35)

The above result matches (21) which was obtained by substituting d = 2 into our general d-
dimensional formula (20) for the first-order relativistic correction. However, (21) is expressed
using quantum numbers n and l whereas (35) is expressed using quantum numbers N and m.
These quantum numbers are related in a straightforward fashion. In section 3.3 we saw that
N = 2n + l. In two dimensions, the only angular momentum operator is Lz so that L2 = L2

z

and therefore m2 = l2 (note that l is a non-negative integer whereas m here can be positive or
negative i.e. m = ± l). Substituting N = 2n+ l and m2 = l2 into (35) yields

E
(1)
d=2 =

−~2 ω2

16mc2
(3N2 + 6N −m2 + 4) = − ~2ω2

8mc2
[
6n2 + l2 + 6n l + 6n+ 3 l + 2

]
(36)

which is exactly the same result as (21).
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4.2 Second-order correction via ladder operators

The second order relativistic correction is the sum of two parts, labeled I and II:

E
(2)
d=2 = E

(2)
I + E

(2)
II = 〈Nm|H ′2 |Nm〉+

∑
N ′ 6=N

| 〈N ′m|H ′1 |Nm〉 |2

E0
N − E0

N ′
(37)

where E
(2)
I is equal to the first term and E

(2)
II to the second term. H ′1 and H ′2 are the relativistic

corrections (4) to the Hamiltonian and E0
N = (N+1)~ω and E0

N ′ = (N ′+1)~ω are the energies
of the non-relativistic two-dimensional isotropic harmonic oscillator (N and N ′ can take on
values of 0, 1, 2, 3,...).

4.2.1 Part I of 2nd order correction: E
(2)
I

The first part of the second-order correction is given by

E
(2)
I = 〈Nm|H ′2 |Nm〉 =

1

16m5c4
〈Nm| p6 |Nm〉 . (38)

The only terms in p6 that we need to keep are those that have the same number of raising and
lowering operators. We label this p60 and it is given by

p60 = (p2)(p4) = ~3m3 ω3
(

(â†â+ b̂†b̂+ 1)K0 − â†b̂† L2 − abR2

)
(39)

where we used (31) and (33) and K0, L2 and R2 are given by (34). Applying (C.13) and
evaluating the expectation value of the above three terms in the state |Nm〉 yields

E
(2)
I =

~3ω3

32m2 c4
(

5N3 + 15N2 − 3m2 − 3N m2 + 22N + 12
)
. (40)

4.2.2 Part II of 2nd order correction: E
(2)
II

Part II of the 2nd order correction is given by

E
(2)
II =

∑
N ′ 6=N

| 〈N ′m|H ′1 |Nm〉 |2

E0
N − E0

N ′
=

1

64m6c4

∑
N ′ 6=N

| 〈N ′m| p4 |Nm〉 |2

E0
N − E0

N ′
. (41)

Substituting (33) for p4 and E0
N = (N + 1)~ω and E0

N ′ = (N ′ + 1)~ω into the above equation
yields

E
(2)
II =

~3ω3

64m2c4

∑
N ′ 6=N

| 〈N ′m|R2 + L2 +R4 + L4 |Nm〉 |2

N −N ′
. (42)
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The operator K0, which is part of p4, is not included above because it makes no contribution;
K0 acting on |Nm〉 returns a state with the same value of N but N ′ cannot equal N . Applying
(C.13) we obtain

R2 |Nm〉 = (−2N − 4)

√
N −m+ 2

2

√
N +m+ 2

2
|N + 2 m〉 ;

L2 |Nm〉 = (−2N)

√
N −m

2

√
N +m

2
|N − 2 m〉 ;

R4 |Nm〉 =

√
N −m+ 4

2

√
N +m+ 4

2

√
N −m+ 2

2

√
N +m+ 2

2
|N + 4 m〉 ;

L4 |Nm〉 =

√
N −m− 2

2

√
N +m− 2

2

√
N −m

2

√
N +m

2
|N − 4 m〉

Substituting the square of the coefficients above into (42), part II of the second-order correction
is given by

E
(2)
II =

~3ω3

256m2 c4
(
− 17N3 − 51N2 + 9N m2 − 70N + 9m2 − 36

)
. (43)

The final result E
(2)
d=2 for the second-order correction in two dimensions is given by the sum of

the two parts E
(2)
I given by (40) and E

(2)
II given by (43):

E
(2)
d=2 = E

(2)
I + E

(2)
II =

~3 ω3

256m2 c4
(
23N3 + 69N2 − 15N m2 + 106N − 15m2 + 60

)
. (44)

In section 5, we obtain the general formula (53) for the second-order correction valid in any
dimension d. When d = 2 is substituted in (53) it yields (54). We therefore want to compare
the above result (44) to (54). As discussed previously (see discussion below (35)), for the
comparison, we need to replace N by 2n+ l and m2 by l2 in (44). This yields the expression

E
(2)
d=2 =

~3 ω3

256m2 c4
(
184n3 + 276n2l + 108nl2 + 8 l3

+ 276n2 + 276nl + 54 l2 + 212n+ 106 l + 60)

(45)

which is in agreement with (54). This provides a strong confirmation of the ladder operator
technique used here and a cross-check between the different methods.

4.3 Physical system with quantized energies equal to those of the two-
dimensional isotropic QHO

We discuss briefly here an example of a non-relativistic physical system that has quantized
energy levels equivalent to those of the non-relativistic two-dimensional isotropic QHO.
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A particle of charge q and mass m moving non-relativistically in the x− y plane under a
uniform magnetic field B = B0 ẑ where B0 is a constant, have quantized energies given by
En = (n + 1

2) ~ωc where n is a non-negative integer and ωc = |q B0|/m is referred to as the
cyclotron frequency. These are the well known Landau levels and they are identical to those
of the one-dimensional QHO but in contrast are continuously degenerate (see [27, 28] for an
introduction). Note that though the particle’s motion is constrained to two dimensions, the
energies are those of the one-dimensional oscillator. The particle is of course free to move in
the z-direction but this would merely add the usual kinetic energy of motion p2z/(2m) to the
Landau levels. We also do not include here the Zeeman splitting due to the coupling of the
spin to the magnetic field.

Consider now adding to the above scenario a linear electric field E = −k z ẑ where k is a

constant. This leads to oscillations in the z-direction with angular frequency ω1 =
√

q k
m (q k

is positive, so that q and k are both positive or both negative). The z and x−y motion are
independent of each other (i.e. one can express the Hamiltonian as H = Hxy + Hz where
Hxy and Hz commute). The quantized energies are then given by the sum of the individual
oscillator energies:

E = (n1 + 1/2) ~ω1 + (n2 + 1/2) ~ωc (46)

where n1, n2 are non-negative integers. If we now choose the magnetic field strength to be

B0 =
√

mk
q then ω1 = ωc = ω and we obtain quantized energies equal to those of the non-

relativistic two-dimensional isotropic QHO,

E = (n1 + n2 + 1) ~ω = (N + 1) ~ω (47)

where N = n1 + n2 is any non-negative integer and ω =
√

q k
m . Therefore, in principle,

one should be able to construct a physical system with a linear electric field and a constant
magnetic field that has the same quantized energies as the non-relativistic two-dimensional
isotropic QHO. In the conclusion, we discuss how the relativistic corrections to this physical
system would be of interest to study in the future.

5 Second-order relativistic correction: general formula

We now calculate the second-order relativistic correction E(2) and obtain a general formula
valid in d dimensions. This correction is the sum of two parts, labeled I and II:

E(2) = E
(2)
I + E

(2)
II = 〈ψ0

n|H ′2|ψ0
n〉+

∑
m 6=n

|〈ψ0
m|H ′1|ψ0

n〉|2

E0
n − E0

m

, (48)
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where E
(2)
I is equal to the first term and E

(2)
II to the second term. H ′1 and and H ′2 are

the relativistic corrections (4) to the Hamiltonian and E0
n and E0

m are the energies of the
unperturbed or non-relativistic isotropic QHO in state ψ0

n and ψ0
m respectively. From the

spectral point of view, the Hamiltonian operator (1) and the operator
√
m2 c4 +m2 ω2 r2 c2 −

mc2 + p2

2m are equivalent [6,8]. We can therefore express H ′1 and and H ′2 in terms of r (or η =
mω r2

~ ) by replacing p2 by m2 ω2 r2 i.e. H ′1 = −mω4 r4

8 c2
= −~2 ω2 η2

8mc2
and H ′2 = mω6 r6

16 c4
= ~3 ω3 η3

16m2c4
.

These expressions for H ′1 and H ′2 were used in [8, 9].

5.1 Part I of second-order correction

Using (24) and (26) the expectation value of η3 is

〈η3〉 =

[
D2
n,l

~ω
(En+1,l + En,l) +

En,l
~ω

(
D2
n,l +

E2
n,l

~2ω2
+D2

n−1,l

)
+
D2
n−1,l
~ω

(En−1,l + En,l)

]
.

Substituting (12) and (25) for En,l and Dn,l respectively yields

E
(2)
I =

~3 ω3

16m2 c4
〈η3〉

=
~3 ω3

16m2 c4

[
20n3 + 15n2 d+

(
4 + 3d+ 3d2

)
n+ l3 +

3

2
(d+ 2) l2 +

(
2 + 3d+

3

4
d2
)
l

+ 30n2 l + 12n l2 + 6 (1 + 2d)n l +
d

8

(
8 + 6d+ d2

) ]
.

(49)

5.2 Part II of second-order correction

The second part of the 2nd-order correction is given by

E
(2)
II =

∑
m 6=n

|〈ψ0
m|H ′1|ψ0

n〉|2

E0
n − E0

m

. (50)

Substituting H ′1 = −~2 ω2 η2

8mc2
and the energy of the unperturbed oscillator (12) into the above

yields

E
(2)
II =

~3 ω3

128 m2 c4

∑
m6=n

|〈um,l|η2|un,l〉|2

n−m
.

17



The above can be evaluated using (26):

E
(2)
II =

~3 ω3

128m2 c4

∑
m6=n

[
|〈um,l|Dn,lDn+1,lun+2,l〉|2

n−m
+
|〈um,l|Dn−1,lDn−2,lun−2,l〉|2

n−m

+
|
〈
um,l|

Dn,l
~ω (En,l + En+1,l)un+1,l

〉
|2

n−m
+
|
〈
um,l|

Dn−1,l

~ω (En,l + En−1,l)un−1,l

〉
|2

n−m

]
.

(51)

Substituting (12) and (25) for En,l and Dn,l respectively into (51) yields the expression for
part II of the second-order correction:

E
(2)
II =− ~3ω3

256m2c4

[
136n3 + 102n2d+ (21d2 + 18d+ 20)n+ 8l3 + (12d+ 18)l2

+ (6d2 + 18d+ 10)l + 204n2l + 84nl2 + (84d+ 36)nl +
1

2
(2d2 + 9d+ 10)d

]
.

(52)

The final expression for the full second-order relativistic correction, the sum of part I given by
(49) and part II given by (52), is

E(2) =
~3ω3

256m2c4

[
184n3 + 138n2d+ (27 d2 + 30 d+ 44)n+ 8 l3 + (12 d+ 30) l2

+ (6 d2 + 30 d+ 22) l + 276n2l + 108nl2 + (108 d+ 60)nl +

(
d2 +

15

2
d+ 11

)
d

]
.

(53)

Note that the above second-order correction is positive and valid for any dimension d. It
is novel and reduces to previous results [9] for d = 1 and d = 3 respectively. In one di-
mension recall that we set l = 0 and n = N/2 where N is a non-negative integer and

this yields E
(2)
d=1 = ~3ω3

512m2c4

(
46N3 + 69N2 + 101N + 39

)
. In three dimensions, one obtains

E
(2)
d=3 = ~3ω3

256m2c4

[
184n3 + 414n2 + 377n + 8l3 + 66l2 + 166l + 276n2l + 108nl2 + 330nl + 255

2

]
.

Both results are in agreement with [9].

The two-dimensional result is novel and given by

E
(2)
d=2=

~3ω3

256m2c4

[
184n3+276n2+212n+8 l3+54 l2+106 l+276n2l+108nl2+276nl+ 60

]
. (54)

Note that the above result for d = 2 is in agreement with the second-order correction (45)
obtained in the previous section via the ladder operator technique. The fact that the d = 1
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and d = 3 results agree with previous work and that the d = 2 results agree with those we
obtained via the independent ladder operator technique is a strong confirmation of our general
formula (53).

6 Conclusion

In this paper we considered the relativistic Hamiltonian operator given by (1). This can be
viewed as representing a relativistic harmonic oscillator obeying the spinless Salpeter equation.
This cannot be solved exactly analytically. We used perturbation theory to obtain the general
formulas (20) and (53) for the first-order and second-order relativistic corrections respectively.
They are expressed in terms of the non-negative integral quantum numbers n and l and are
valid in any dimension d. Both formulas reduce to previously known results [8,9] for the cases
of d = 1 and d = 3. We saw that the the relativistic corrections split the original energy, labeled
by N , into [N/2 +1] distinct levels (labeled by l) each with their own degeneracy given by (30).
The results for d = 2 are novel and match those that we obtained using an independent ladder
operator technique (equation (36) for the first-order and equation (45) for the second-order).

In all, we used three independent methods in this paper. One method was a d-dimensional
Kramers-Pasternak type relation that we derived in appendix B which allows one to evaluate
the expectation value of a certain power of r in terms of the expectation values of other powers
of r. This was used to obtain the general formula for the first-order correction (method I).
The second method made use of a recurrence relation for the eigenfunctions when they are
multiplied by η, η2 or η3 where η is proportional to r2. This was used to obtain the general
formula for the first-order correction in an alternative fashion (method II) and to obtain the
general formula for the second-order correction. The third method made use of ladder operators
in polar coordinates to evaluate the first and second-order corrections for the two-dimensional
case. The results of all three methods agree with each other. Relativistic wave equations reduce
to Schrödinger’s equation plus corrections in the non-relativistic limit [29]. These corrections,
besides others, will typically include the kinematic p4 and p6 perturbations, so that in most
cases, the different techniques used here should be very useful.

It is well known that a charged particle moving non-relativistically in a uniform magnetic field
has discrete energies – called Landau levels – that are equivalent to those of the one-dimensional
QHO. We pointed out that a charged particle moving non-relativistically in a uniform magnetic
field B = B0 ẑ and a linear electric field E = −k z ẑ, where B0 and k are constants, can have
discrete energies that are equivalent to those of the two-dimensional isotropic QHO as long
as the magnetic field is of a particular strength. What are the relativistic energies of this
system? There is no exact analytical solution to the Dirac equation for this system3. One can

3Known exact solutions to the Dirac equation are limited. The following cases have been solved exactly: a
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either solve it exactly numerically or obtain an analytical approximation using perturbation
theory. Though the non-relativistic energies of the charged particle in the physical scenario
discussed above match those of the two-dimensional isotropic QHO, there is no reason that
the relativistic corrections should match exactly (besides the differences due to the coupling
of the spin with the magnetic field). However, it is expected that they should resemble them
quite closely in form.

A Radial equation in d dimensions

In d spatial dimensions, Schrödinger’s equation is given by

− ~2

2m
∆ψ + V ψ = E ψ, (A.1)

where ∆ is the Laplacian operator, which in spherical coordinates is

∆ =
1

rd−1
∂

∂r

(
rd−1

∂

∂r

)
+

1

r2
∆sd−1 . (A.2)

Here, ∆sd−1 is the Laplace-Beltrami operator on the (d−1)-sphere and it only contains deriva-
tives with respect to the angles θ, φ1, φ2, ... , φd−2.

We now assume that the potential is spherically symmetric so that V = V (r) and look for
solutions of Schrödinger’s equation in separable form i.e.

ψ = R(r) Ω(θ, φ1, ..., φd−2) = RΩ.

Then (A.1) take the form

R∆sd−1Ω− 2m

~2
r2
(
V (r)− E

)
RΩ +

Ω

rd−3
∂

∂r

(
rd−1

∂R

∂r

)
= 0.

Dividing both sides by ψ = RΩ, one obtains

∆sd−1Ω

Ω
+
[
− 2mr2

~2
(
V (r)− E

)
+

1

Rrd−3
∂

∂r

(
rd−1

∂R

∂r

)]
= 0.

The first term depends only on angles and the second term in square brackets depends only on
r. Therefore each term must be equal to a constant. The constant is l (l + d− 2) where ` is a
non-negative integer and this can be obtained by solving the angular part of the equation [25]

constant magnetic field, a constant electric field, a constant orthogonal electric and magnetic field, the Coulomb
potential and a few others (see [30] and references therein).
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(in three dimensions it reduces to the familiar value of `(` + 1)). Equating the radial part in
square brackets to this constant yields the equation

− 2mr2

~2
(
V (r)− E

)
+

1

Rrd−3
∂

∂r

(
rd−1

∂R

∂r

)
= l(l + d− 2). (A.3)

Let u(r) = r R(r). Then

d

dr

(
rd−1

dR

dr

)
= −(d− 3)u rd−4 + (d− 3)u′rd−3 + u′′ rd−2

where a prime denotes derivative with respect to r. Expressing (A.3) in terms of u yields the
radial equation in d dimensions:

u′′ =

[
2m

~2
(
V (r)− E

)
+

(
d− 3 + l(l + d− 2)

)
r2

]
u− (d− 3)

r
u′ (A.4)

B Derivation of d-dimensional Kramers-Pasternak type rela-
tion

We now derive a d dimensional Kramers-Pasternak type relation. Multiplying (6) by u rs rd−3

and then integrating yields∫
u rs u′′ rd−3 dr =

m2ω2

~2
〈 rs+2 〉 − 2mE

~2
〈 rs 〉+ [d− 3 + l(l + d− 2)] 〈 rs−2 〉

− (d− 3)

∫
u rs−1 u′ rd−3 dr. (B.1)

where 〈 f(r) 〉 denotes the expectation value of f(r) defined as
∫
u f(r)u rd−3 dr. Integrating

by parts we obtain∫
u rs u′′ rd−3 dr = −

∫
u′ rs u′ rd−3 dr + (3− d− s)

∫
u rs−1 u′ rd−3 dr (B.2)

where we used the fact that the boundary term is equal to zero. Integrating by parts again,
one obtains that ∫

u rs u′ rd−3 dr =
(3− d− s)

2
〈 rs−1 〉 (B.3)

and ∫
u′ rs u′ rd−3 dr =

2

(2− d− s)

∫
u′′ rs+1 u′ rd−3 dr (B.4)
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Substituting u′′ from (6) into (B.4) and then using the result (B.3) yields∫
u′ rs u′ rd−3 dr =

1

4− d+ s

[m2ω2

~2
(d+ s) 〈 rs+2 〉+

2mE

~2
(2− d− s) 〈 rs 〉

+
(
d− 3 + l (l + d− 2)

)
(s+ d− 4) 〈 rs−2 〉

]
. (B.5)

Substituting (B.5) and the result (B.3) into (B.2) and then substituting that result into (B.1)
yields a d-dimensional Kramers-Pasternak type relation:

m2ω2

~2
(2s+ 4)〈 rs+2 〉 − 2mE

~2
(2s+ 2) 〈 rs 〉

+

[(
d− 3 + l (l + d− 2)

)
2s+

s

2
(4− d− s)(4− d+ s)

]
〈 rs−2 〉 = 0 . (B.6)

The above equation is used in section 3.1 to evaluate 〈 r4 〉.

C Ladder operators in polar coordinates

The ladder operators in polar coordinates are defined in terms of those in Cartesian coordinates
so it will be beneficial to quickly review the Cartesian case as the results then transfer readily
to polar coordinates. In two dimensions, the ladder operators in Cartesian coordinates are
defined as:

âx =
1√

2~mω
(mω x̂+ ip̂x) and ây =

1√
2~mω

(mω ŷ + ip̂y) (C.1)

and obey the commutation relations

[âx, â
†
x] = 1 ; [ây, â

†
y] = 1 with all other commutations being zero . (C.2)

Here â†x = 1√
2~mω

(mω x̂ − ip̂x) is the conjugate transpose of âx. The unperturbed (non-

relativistic) Hamiltonian operator is given by

H0 =
p̂2x
2m

+
p̂2y
2m

+
1

2
mω2(x̂2+ ŷ2) = (â†xâx+ â†yây+1)~ω = (n̂x+ n̂y+1)~ω = (N̂+1)~ω (C.3)

where n̂x = â†xâx, n̂y = â†yây and N̂ = n̂x + n̂y. The Hamiltonian breaks up into a sum of
two one-dimensional oscillators, one in the x and one in the y. The ladder operators have the
following properties:

[N̂ , âx
†] = âx

† ; [N̂ , ây
†] = ây

† ; [N̂ , âx] = −âx ; [N̂ , ây] = −ây . (C.4)
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This implies that when â†x or â†y acts on an eigenstate of N̂ it increases its eigenvalue by 1
whereas âx or ây decreases it by 1. For this reason, the former are called raising operators and
the latter lowering operators. The harmonic oscillator potential is non-negative and therefore
the energy E must also be non-negative. This implies that there is an eigenstate ψ0 (the
ground state) of n̂ that yields zero when the lowering operators âx or ay act on it i.e. when n̂x
and n̂y act on ψ0, they yield zero so that their eigenvalues (and those of N̂) start at zero and
increase by unity (are non-negative integers). Since [n̂x, n̂y] = 0, we can construct simultaneous
eigenstates of these two operators (they are then eigenstates of N̂ and the Hamiltonian H0).
We denote the eigenstates as |nxny〉, and their respective eigenvalues will be nx and ny, both
non-negative integers. The energy of the two-dimensional oscillator is then (N + 1)~ω where
N = nx+ny is also a non-negative integer. The energy for a given N is then clearly (N+1)-fold
degenerate.

We define the ladder operators â and b̂ as

â =
1√
2

(âx + iây) and b̂ =
1√
2

(âx − iây) . (C.5)

With the above definitions, it follows from (C.2) that they have the following property:

[â, â†] = 1 and [b̂, b̂†] = 1 (with all other commutators zero) . (C.6)

It is convenient to define the operators

n̂a = â†â and n̂b = b̂†b̂ . (C.7)

The operator N̂ = n̂x + n̂y takes on the similar form

N̂ = n̂a + n̂b (C.8)

and we obtain commutation relations similar to (C.4):

[N̂ , â†] = â† ; [N̂ , b̂†] = b̂† ; [N̂ , â] = −â ; [N̂ , b̂] = −b̂ . (C.9)

Again, this implies that when â† and b̂† act on an eigenstate of N̂ , they increase its eigenvalue
by unity whereas â and b̂ decrease its eigenvalue by unity.

In two dimensions, the only angular momentum operator is Lz ≡ x̂p̂y− ŷp̂x = −i~ ∂
∂θwhere θ is

the usual angle in polar coordinates. We can express Lz in terms of the n̂a and n̂b operators:

Lz = i~ (a†yax − aya†x) = ~ (n̂b − n̂a) (C.10)

where (C.1),(C.2),(C.5),(C.6) and (C.7) were used. From (C.6) we can deduce the following
commutation relations:

[Lz, â] = ~ â ; [Lz, â
†] = −~ â† ; [Lz, b̂] = −~ b̂ ; [Lz, b̂

†] = ~ b̂† . (C.11)
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This implies that when â and b̂† act on an eigenstate of Lz they raise the angular momentum
by ~ whereas â† and b̂ lower it by ~. Because of this property, the operators â and b̂ (and their
conjugate transpose) are the ladder operators appropriate for use with polar coordinates.

Note that [n̂a, n̂b] = 0 so we can construct simultaneous eigenstates of the two operators. We
label this product state |na nb〉 with n̂a |na nb〉 = na |na nb〉 and n̂b |na nb〉 = nb |na nb〉 where
both na and nb are non-negative integers (this follows from exactly the same argument we gave
above as to why nx and ny are non-negative integers). The state |na nb〉 are also simultaneous
eigenstates of Lz and N̂ – in accord with the fact that [N̂ , Lz] = 0 – with eigenvalues ~(nb−na)
and na+nb respectively . It is more convenient to work with the alternate product state |Nm〉
such that

N̂ |Nm〉 = N |Nm〉 (N = 0, 1, 2, 3, ...) ; Lz |Nm〉 = ~m |Nm〉 (m = −N,−N+2, ..., N−2, N)
(C.12)

where N = na + nb and m = nb − na. For a given non-negative integer N , m runs from −N
to N in steps of two. This follows from the fact that for a given N , the allowed pairs (na, nb)
are (N, 0), (N − 1, 1), ..., (1, N − 1), (0, N) which yields m = −N,−N + 2, ..., N − 2, N . The
energy is given by (N + 1)~ω and there are N + 1 values of m for each energy level so that the
energies of the two-dimensional oscillator are (N + 1)-fold degenerate in agreement with the
degeneracy previously obtained using Cartesian coordinates.

For later calculations, we need to determine the coefficients when â, â†, b̂ and b̂† act on |Nm〉.
From (C.8) and (C.10) we know that n̂a = â†â = 1

2(N̂ − Lz/~) and n̂b = b̂†b̂ = 1
2(N̂ + Lz/~).

Therefore 〈Nm| â†â |Nm〉 = N−m
2 and 〈Nm| b̂†b̂ |Nm〉 = N+m

2 . It then follows from (C.6) that

〈Nm| ââ† |Nm〉 = N−m+2
2 and 〈Nm| b̂b̂† |Nm〉 = N+m+2

2 . From these above results and using
(C.9) and (C.11), we obtain the following:

â |Nm〉 =
√

N−m
2 |N − 1m+ 1〉 b̂ |Nm〉 =

√
N+m

2 |N − 1m− 1〉

â† |Nm〉 =
√

N−m+2
2 |N + 1m− 1〉 b̂† |Nm〉 =

√
N+m+2

2 |N + 1m+ 1〉 . (C.13)

With the above results, we can build the state |Nm〉 from the ground state |00〉:

|Nm〉 =
1

(N−m2 )!(N+m
2 )!

(â†)(N−m)/2b̂†)(N+m)/2 |00〉 . (C.14)
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