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General Context: The Medical Aspect

I A drug, Candesartan, was synthesized with 18F. This
drug is used for renal hypertension;

I The radiolabelled drug would be used to verify whether
the drug would be useful for a given patient;

I For acceptance by Health Canada, it must first be
shown that the radiopharmaceutical drug binds

I A preclinical run was made on rats and mice at two
Canadian institutions.

Figure: [18F]fluoropyridine-candesartan
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General Context: The Inception

I The left kidney of the animals had to be analyzed for
pharmacokinetic parameters;

I The reference tool used would have been the Task
Group 211 (TG-211) Report from the American
Association of Physicists in Medicine (AAPM);

I The proposed methods are static and don’t consider
metabolic and physical movements of the subjects
between timeframes.

Figure: Two temporally adjacent timeframes for a PET acquisition
on a rat
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New Goal

I The new goal is to understand the impact of a static
segmentation on a dynamic PET image;

I This would lead to a better understanding of:
I Methodological Errors;
I Impact of the segmentation method;
I Impact upon the subsequent analyses (qualitative and

quantitative).

Figure: Schematic Representation of the phantom
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Experimental Approach: Theoretical Model

I A simple two-compartment model is regulated by the
following set of differential equations:Q ′1Q ′2

Q ′3
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I This model can be analytically solved for the two first

compartments, which are of interest:
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Experimental Approach: Experimental Model

I In order to understand the limitations of static
segmentations in dynamic imaging, a custom phantom
was made;

I The phantom had three compartments with the two of
interest;

I Many dynamic acquisitions were done with FDG.

Figure: X-ray view of the phantom
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Analysis: First Steps

I With the images, we took a subsample (4-D subset of
the image) of it containing the compartment of interest;

I We did various segmentations based on the AAPM
TG-211 categories (statistical, gradient, and filling);
I The segmentation were done on a given timeframe and

kept constant for the whole dynamic acquisition;

I We selected by hand the segmentations that gave a
roughly desirable shape.

Figure: Left: A top view of a given dynamic acquisition at a given
timeframe
Right: The subset for the second compartment (right)
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Analysis: The Segmentations

Figure: Top: Reconstructed Image centered around the second
compartment for a given timeframe;
Bottom: Segmentations of the top image based, respectively, on
gradients, statistics, and filling methods.
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Analysis: The Tools

I To analyze the results and the quality of the
segmentations, three quantitative tools were used:
I Dice Coefficients;
I TACs with shifting errors;
I Pharmacokinetic parameters from the TACs.

I For the two last methods, an uncertainty was
introduced into the TACs by moving subtly the
segmentations by one voxel.

Figure: Left: TACs as obtained directly
Right: TACs with the introduced uncertainty
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Analysis: Sørensen-Dice Coefficient

I The Sørensen-Dice coefficient can be used to compare
two segmentations;

D(A,B) =
2|A ∪ B|
|A|+ |B|

I For a given segmentation, the segmentations based on
different timeframes were compared.

Figure: Dice Coefficients for a given dynamic acquisition based on
many timeframes.
N.B.: The number of decent segmentations varied greatly with the
method.
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Analysis: TACs

I The TACs were qualitatively compared to see whether
they overlapped in their uncertainties;

I For the phantom, this was the case for most of the
acquisitions.

Figure: TACs with uncertainties for a given acquisition. In this
case, most of the TACs overlap.
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Analysis: Pharmacokinetic Parameters

I By using the two-compartment model, it is possible to
estimate the pharmacokinetic parameters;

I This extraction was made using the Dynesty package in
Python.

Figure: Pharmacokinetic parameters obtained via Dynesty for a
specific dynamic acquisition.
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Summary

I The results so far indicate that static segmentations are
not adequate for dynamic acquisitions, even in the
simplest case;

I For preclinical dynamic images, more work needs to be
done;

I Possible future endeavours include:
I The use anatomical images;
I The use of segmentations valid for dynamic images;
I The integration of sufficient uncertainties in the

proposed results.

Figure: Three views for a dynamic acquisition on a rat
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Manual Segmentations: Why Not

I The image for a given timeframe is not necessarily very
different from the subsequent one;

I The shape is not always nice and solid;

I The model requires the whole volume to be segmented;

I There is a high risk for inter- and intra-user variability.

Figure: Three temporally adjacent timeframes for a given phantom
acquisition



Need for Dynamic
Segmentation

Philippe Laporte

Experimental
Context

New Goal

Experiment

Analysis

Dice Coefficient

Time-Activity Curves

Pharmacokinetic
Parameters

Summary

14/14

Manual Segmentations: Why Not

Figure: Gif of the evolution of a rat dynamic PET acquisition
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Selection of the Segmentations

I Some segmentations were not kept for the analyses;
I It was too early in the acquisition;
I The visual segmentation was aberrant.

Figure: Some segmentations that were not kept for the subsequent
analyses
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